

Organismo di ricerca Comunicazione Commissione Europea 2006/C 323/01

TEST REPORT

SQM_799_2023

CUSTOMER Kebe S.A.

PRODUCT NAME

TYPE OF PRODUCT

Masonry unit

TYPE OF TEST

Determination of the thermal design conductivity of the block and of masonry made with it

Ordering Kebe S.A. Product placed on the market from Kebe S.A. - 61100 Nea Santa - Kilkis - GREECE Data related to the sample examined Masonry unit Sample origin sampled and provided from the Customer Manufacturing plant Kebe S.A. - 61100 Nea Santa - Kilkis - GREECE

Estimate prot. 23545/lab of 10/18/2023 Order confirmation email of 10/18/2023 Receipt of the samples 10/18/2023 Test execution November 2023 Laboratory and location of test execution Certimac - via Ravegnana, 186 - Faenza (RA)

Report issued 11/24/2023 **Revision n°** 00

Test executed by: Eng. Mattia Morganti Report drafted by: Eng. Mattia Morganti Approval: Technical director Eng. L. Laghi

This document consists of n. 7 pages and cannot be reproduced partially, extrapolating parts of interest at the discretion of the customer, with the risk of favoring an incorrect interpretation of the results, except as defined in the contract. The original of this test report consists of a digitally signed electronic document in accordance with the applicable Italian legislation. Information provided by the Committee. The Laboratory declines all responsibility with respect to the nature of such information. Sampling was done by the customer. The results are verified with the sample as received.

This test report is part of a file in PDF format digitally signed by Luca Laghi

Chief Technical Officer (Eng. Luca Laghi)

1. Object of the test

The following test report describes the determination of thermal design values of a masonry brick. The calculations were performed by means of a Finite Element Model implemented in Ansys 18.2 (Ref. 2-b), applied to a planar cross section (unit length), perpendicular to the holes axis and parallel to the thermal flux. In this calculation, the input data have been modified taking into account the effect of humidity as indicated by the technical standard in Ref. 2-a.

2. Reference standards and documents

The tests have been executed according to the methods defined in the following documentations and reference standards:

- a. EN ISO 10456:2007. Building materials and products Hygrothermal properties -Tabulated design values and procedures for determining declared and design thermal values (ISO 10456:2007)
- b. CertiMaC calibration report 040219-C-17/Rev01. Calibration of a two-dimensional model for the calculation of the equivalent thermal conductivity of a masonry unit.
- c. EN 6946:2008. Building components and building elements Thermal resistance and thermal transmittance Calculation method.
- d. Test report SQM_798_2023, 11/24/2023 Determination of the equivalent thermal conductivity of the block NK380 and of masonry made with it.

3. Input data

The technical drawing of the block and the thermal conductivity of fired clay were supplied by the client (Figure 1). All input data used for the calculation are shown in Table 1-2.

Figure 1. Geometry of the block

Table 1. Input data

Physical quantity	Nominal value	Ref.
Material thermal conductivity $\lambda_{10,dry,mat}$	0.373 W/mK	Provided by the Customer
Equivalent thermal conductivity of voids	Test Report NK380	Ref. 2-d

Table 2. Input data of the masonry

Masonry n. 1	Nominal value	Ref.
Horizontal mortar joints	Thickness = 3 mm λ_{mortar} = 0.87 W/mK	Provided by the Customer
Internal plaster	Thickness = 25 mm λ_{mortar} = 1.0 W/mK	Provided by the Customer
External plaster	Thickness = 25 mm λ_{mortar} = 1.0 W/mK	Provided by the Customer

Masonry n. 2	Nominal value	Ref.
Horizontal mortar joints	Thickness = 3 mm λ _{mortar} = 0.87 W/mK	Provided by the Customer
Internal plaster	Thickness = 25 mm λ_{mortar} = 1.0 W/mK	Provided by the Customer
External plaster	Thickness = 30 mm λ_{mortar} = 0.08 W/mK	Provided by the Customer

Masonry n. 3	Nominal value	Ref.
Horizontal mortar joints	Thickness = 3 mm λ _{mortar} = 0.87 W/mK	Provided by the Customer
Internal plaster	Not present	Provided by the Customer
External plaster	Not present	Provided by the Customer

Masonry n. 4	Nominal value	Ref.
Horizontal mortar joints	Thickness = 3 mm λ _{mortar} = 0.87 W/mK	Provided by the Customer
Internal plaster	Thickness = 25 mm λ_{mortar} = 1.0 W/mK	Provided by the Customer
External plaster	Thickness = 31 mm λ_{mortar} = 0.08 W/mK	Provided by the Customer

Masonry n. 5	Nominal value	Ref.
Horizontal mortar joints	Thickness = 3 mm λ_{mortar} = 0.87 W/mK	Provided by the Customer
Internal plaster	Thickness = 25 mm λ_{mortar} = 1.0 W/mK	Provided by the Customer
External plaster	Thickness = 32 mm λ_{mortar} = 0.08 W/mK	Provided by the Customer

Masonry n. 6	Nominal value	Ref.
Horizontal mortar joints	Thickness = 3 mm λ _{mortar} = 0.87 W/mK	Provided by the Customer
Internal plaster	Thickness = 25 mm λ_{mortar} = 1.0 W/mK	Provided by the Customer
External plaster	Thickness = 33 mm λ_{mortar} = 0.08 W/mK	Provided by the Customer

4. Determination of the thermal design values

Thermal design values of the masonry are determined as defined by the standards at Ref. 2-a and 2-c, increasing the thermal conductivity of the materials in relation to the moisture content, using the following conversion coefficient (moisture content volume by volume):

$$F_{\mathsf{m}} = \mathsf{e}^{f_{\psi}(\psi_2 - \psi_1)}$$

The standard sets as operating conditions a temperature of 23 $^{\circ}$ C and a relative humidity of 80% (precautionary hypothesis), which is related to the test condition at 10 $^{\circ}$ C, dry.

4. Results

Table 3 shows the results of the Finite Elements Analysis performed with design thermal values at Ref. 2-a.

Heat flow [W/m]	Thermal coupling coefficient L ^{2D} [W/mK]	Thermal transmittance U [W/m²K]	Total thermal resistance R _T [m ² K/W]	True thermal resistance of the masonry unit R _t [m ² K/W]	Equivalent thermal conductivity λ _{10,dry,unit} [W/mK]
2.1485	0.1074	0.4329	2.3101	2.1401	0.1757

Table 3. FEM results

5. Determination of thermal values of the masonry

Table 4 shows the thermal values of the masonry, in the six configurations described above.

	Only
Masonry n. 1	Result
hermal resistance only of the layer ${f R}_t$ [m²K/W]	2.0654

Table 4. Results of the calculation for the masonry

Thermal resistance only of the layer ${f R}_t$ [m²K/W]	2.0654
Equivalent thermal conductivity of the masonry λ_{equ} [W/mK]	0.2063
Thermal resistance of the masonry including superficial thermal resistances R_T (m ² K/W)	2.2354
Thermal transmittance U (W/m ² K)	0.4473

Masonry n. 2	Result
Thermal resistance only of the layer ${f R}_t$ [m²K/W]	2.3423
Equivalent thermal conductivity of the masonry λ_{equ} [W/mK]	0.1840
Thermal resistance of the masonry including superficial thermal resistances R_T (m ² K/W)	2.5123
Thermal transmittance U (W/m²K)	0.3980

Masonry n. 3	Result
Thermal resistance only of the layer ${f R}_t$ [m ² K/W]	2.0088
Equivalent thermal conductivity of the masonry _{equ} [W/mK]	0.1872
Thermal resistance of the masonry including superficial thermal resistances R_T (m ² K/W)	2.1788
Thermal transmittance U (W/m ² K)	0.4590

Masonry n. 4	Result
Thermal resistance only of the layer ${f R}_t$ [m²K/W]	2.3524
Equivalent thermal conductivity of the masonry _{equ} [W/mK]	0.1836
Thermal resistance of the masonry including superficial thermal resistances R_T (m ² K/W)	2.5224
Thermal transmittance U (W/m²K)	0.3964

Masonry n. 5	Result
Thermal resistance only of the layer ${f R}_t$ [m²K/W]	2.3626
Equivalent thermal conductivity of the masonry λ_{equ} [W/mK]	0.1833
Thermal resistance of the masonry including superficial thermal resistances R_T (m ² K/W)	2.5326
Thermal transmittance U (W/m²K)	0.3949

Masonry n. 6	Result
Thermal resistance only of the layer ${f R}_t$ [m ² K/W]	2.3727
Equivalent thermal conductivity of the masonry λ_{equ} [W/mK]	0.1829
Thermal resistance of the masonry including superficial thermal resistances R_T (m ² K/W)	2.5427
Thermal transmittance U (W/m²K)	0.3933

SUMMARY TABLE OF RESULTS

The tests previously described gave the following results:

Product	Thermal design conductivity λ _{equ} [W/mK]	Thermal design transmittance U [W/m²K]
block NK380	0.1757	0.4329
Masonry n. 1	0.2063	0.4473
Masonry n. 2	0.1840	0.3980
Masonry n. 3	0.1872	0.4590
Masonry n. 4	0.1836	0.3964
Masonry n. 5	0.1833	0.3949
Masonry n. 6	0.1829	0.3933

6. List of distribution

ENEA	Archive	1 сору
Certimac	Archive	1 сору
Kebe S.A.	Archive	1 сору

In charged of technical test execution	In charged of technical report drafting	Technical director Approval
Eng. Mattia Morganti	Eng. Mattia Morganti	Ing. Luca Laghi
M.M. MayA.	M.M. MayA.	X (B)

This document is the exclusive property of Certimac and may not be reproduced or disclosed in any form and by any means, either wholly or partially, without having previously obtained the written permission of Certimac.

----- End of the Test Report -----

Organismo di ricerca Comunicazione Commissione Europea 2006/C 323/01

TEST REPORT

SQM_798_2023

CUSTOMER Kebe S.A.

PRODUCT NAME

TYPE OF PRODUCT

Masonry unit

TYPE OF TEST

Determination of the equivalent thermal conductivity of the block and of masonry made with it

Ordering Kebe S.A. Product placed on the market from Kebe S.A. - 61100 Nea Santa - Kilkis - GREECE Data related to the sample examined Masonry unit Sample origin sampled and provided from the Customer Manufacturing plant Kebe S.A. - 61100 Nea Santa - Kilkis - GREECE

Estimate prot. 23545/lab of 10/18/2023 Order confirmation email of 10/18/2023 Receipt of the samples 10/18/2023 Test execution November 2023 Laboratory and location of test execution Certimac - via Ravegnana, 186 - Faenza (RA)

Report issued 11/24/2023 **Revision n°** 00

Test executed by: Eng. Mattia Morganti Report drafted by: Eng. Mattia Morganti Approval: Technical director Eng. L. Laghi

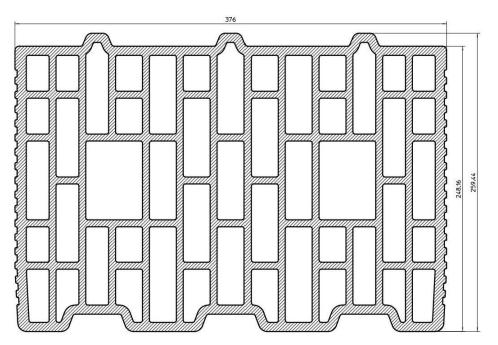
This document consists of n. 6 pages and cannot be reproduced partially, extrapolating parts of interest at the discretion of the customer, with the risk of favoring an incorrect interpretation of the results, except as defined in the contract. The original of this test report consists of a digitally signed electronic document in accordance with the applicable Italian legislation. Information provided by the Committee. The Laboratory declines all responsibility with respect to the nature of such information. Sampling was done by the customer. The results are verified with the sample as received.

This test report is part of a file in PDF format digitally signed by Luca Laghi

Chief Technical Officer (Eng. Luca Laghi)

1. Object of the test

The following test report describes the determination of the equivalent thermal values of a masonry brick. The calculations were performed by means of a Finite Element Model implemented in Ansys 18.2 (Ref. 2-b), applied to a planar cross section (unit length), perpendicular to the holes axis and parallel to the thermal flux.


2. Reference standards and documents

The tests have been executed according to the methods defined in the following documentations and reference standards:

- a. EN 1745:2012. Masonry and masonry products Methods for determining thermal properties.
- b. CertiMaC calibration report 040219-C-17/Rev01. Calibration of a two-dimensional model for the calculation of the equivalent thermal conductivity of a masonry unit.
- c. EN 6946:2008. Building components and building elements Thermal resistance and thermal transmittance Calculation method.

3. Input data

The technical drawing of the block and the thermal conductivity of fired clay were supplied by the client (Figure 1). All input data used for the calculation are shown in Table 1.

Figure 1. Geometry of the block

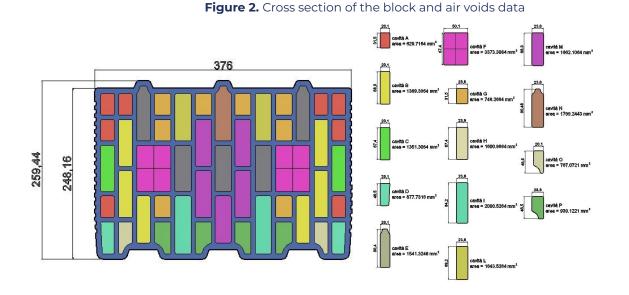


Table 1. Input data

Physical quantity	Nominal value	Ref.
Internal temperature Ti	20 °C = 293.15 K	Ref. 2-a and 2-c
External temperature Te	0 °C = 273.15 K	Ref. 2-a and 2-c
Internal superficial resistance Rsi	0.13 m ² K/W	Ref. 2-a and 2-c
External superficial resistance Rse	0.04 m²K/W	Ref. 2-a and 2-c
Material thermal conductivity $\lambda_{10,dry,mat}$	0.373 W/mK	Provided by the Customer

Equivalent thermal conductivity values of air voids were determined according to the methodology outlined in Ref. 2-a and 2-f., approximating convective and radiative heat transfer inside the void (Figure 2).

4. Results

Table 2 shows the results of the Finite Elements Analysis; Figures 3 and 4 graphically show the distribution of the isotherms and the vector state of the heat flow.

Heat flow [W/m]	Thermal coupling coefficient L ^{2D} [W/mK]	Thermal transmittance U [W/m²K]	Total thermal resistance R _τ [m ² K/W]	True thermal resistance of the masonry unit R _t [m ² K/W]	Equivalent thermal conductivity λ _{10,dry,unit} [W/mK]
2,0619	0.1031	0.4154	2.4071	2.2371	0.1681

Table 2. FEM results

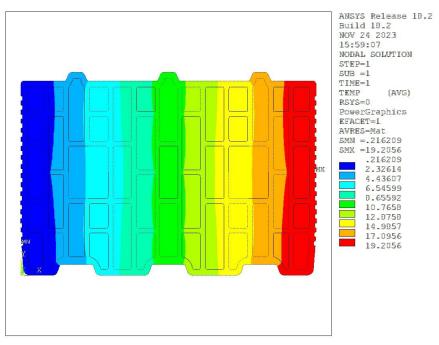
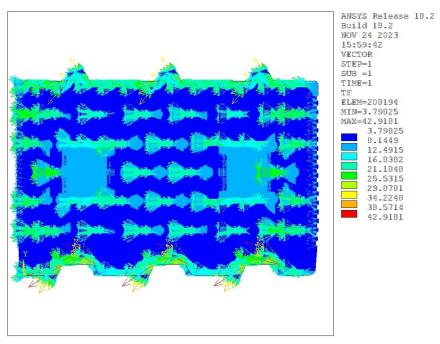



Figure 3. Distribution of isotherms in the block [°C]

5. Determination of thermal values of the masonry

In order to evaluate the thermal values of the masonry, only horizontal mortar joints were considered, without plaster layers. Because of the interlocking block geometry, the vertical joint was not considered. For the evaluation of the thermal values of the masonry, two different configurations were studied:

- 3 mm thick horizontal joints,
- no horizontal joints.

Table 3 shows the input data used for the masonry calculations.

Table 3. Input data for masonry calculations

Material	Dimensions [mm]	Thermal conductivity [W/mK]
Masonry unit	376 x 248.16 x 240	0.1681
Horizontal traditional mortar joints	Thickness = 3 – 0	0.900

Tables 4 and 5 show the thermal values of the masonry, in the two configurations described above.

Table 4. Results of the calculation for the masonry with 3 mm thick horizontal joints

Physical quantity	Result
Thermal resistance only of the layer ${f R}_t$ [m²K/W]	2.1230
Equivalent thermal conductivity of the masonry λ_{equ} [W/mK]	0.1771
Thermal resistance of the masonry including superficial thermal resistances R_T (m ² K/W)	2.2930
Thermal transmittance U (W/m²K)	0.4361

Table 5. Results of the calculation for the masonry without mortar joints

Physical quantity	Result
Thermal resistance only of the layer ${f R}_t$ [m ² K/W]	2.2371
Equivalent thermal conductivity of the masonry λ_{equ} [W/mK]	0.1681
Thermal resistance of the masonry including superficial thermal resistances R_T [m ² K/W]	2.4071
Thermal transmittance U [W/m²K]	0.4154

SUMMARY TABLE OF RESULTS

The tests previously described gave the following results:

Product	Equivalent thermal conductivity λ _{equ} [W/mK]	Thermal transmittance U [W/m²K]
block NK380	0.1681	0.4154
Masonry with 3 mm thick horizontal joints	0.1771	0.4361
Masonry without mortar joints	0.1681	0.4154

6. List of distribution

ENEA	Archive	1 сору
Certimac	Archive	1 сору
Kebe S.A.	Archive	1 сору

In charged of technical test execution	In charged of technical report drafting	Technical director Approval
Eng. Mattia Morganti	Eng. Mattia Morganti	Ing. Luca Laghi
M.M. Margh.	M.M. Margh.	X Cap

This document is the exclusive property of Certimac and may not be reproduced or disclosed in any form and by any means, either wholly or partially, without having previously obtained the written permission of Certimac.

----- End of the Test Report -----

